Prediction of Water Level Fluctuations of Chahnimeh Reservoirs in Zabol Using ANN, ANFIS and Cuckoo Optimization Algorithm
Abstract
Keywords
References
Bae DH, Jeong DM, Kim G. Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique. HYDROLOG SCI J. 2007; 52 (1): 99–13.
Berrazouane S, Mohammedi K. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system, ENERG CONVERS MANAGE. 2014; 78(1): 652–60.
Chang, FJ, Chang, YT. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. ADV WATER RESOUR. 2006; 29(1): 1–10.
Chang FJ, Chen YC. Counter propagation fuzzy-neural network modeling approach to real time stream flow prediction. J HYDROL. 2001; 245 (1-4): 153–64.
Shiri J, Makarynskyy O, Kisi O, Dierickx W, Fakheri Fard A. Prediction of short term operational water levels using an adaptive neuro-fuzzy inference system. J. Waterw. Port Coast. Ocean Eng. 2011; 137(6): 344-54.
Hong YST, White PA. Hydrological modeling using a dynamic neuro- fuzzy system with on-line and local learning algorithm. ADV WATER RESOUR. 2009; 32(1): 110–19.
Kazeminezhad MH, Etemad-shahidi A, Mousavi SJ. Application of fuzzy inference system in the prediction of wave parameters. OCEAN ENG. 2005; 32(14-15): 1709–25.
Keskin ME, Terzi O, Taylan D. Fuzzy logic model approaches to daily pan evaporation estimation in Western Turkey. HYDROLOG SCI J. 2004; 49 (6):1001–10.
Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour. 2009; 32(1): 88–97.
Yang XS, Deb S. Multiobjective cuckoo search for design optimization, Comput Oper Res.2013; 40(6):1616–24.
Kisi O, Ozturk O. Adaptive neurofuzzy computing technique for evaporation transpiration estimation. J IRRIG DRAIN E-ASCE. 2007; 133 (4): 368–79.
Kisi O, Shiri J, Nikoofar B. Forecasting daily lake levels using artificial intelligence approaches. Computers & Geosciences. 2012; 41 (1): 169-80.
Jain SK, Das D, Srivastava DK. Application of ANN for reservoir inflow prediction and operation. J WATER RES PL-ASCE. 1999; 125(5): 263–71.
Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. INT J MACH TOOL MANU. 1975; 7 (1): 1–13.
Rajabioun R. Cuckoo Optimization Algorithm. Appl Soft Comput. 2011; 11(8): 5508 – 18.
More A, Deo MC. Forecasting wind with neural networks. Marine Structures. 2003; 16(1): 35–49.
Ondimu S, Murase H, Reservoir level forecasting using neural networks: Lake Naivasha Biosyst Eng. 2007; 96 (1): 135–38.
Russell SO, Campbell PF. Reservoir operating rules with fuzzy programming. J. Water Resour Plann Manage. 1996; 122 (3):165–70.
Ozger M, Yildirim G. Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique. Adv Eng Software 2009; 40(4): 281–87.
Piri J, Amin S, Moghaddamnia A, Han D, Remesun D. Daily pan evaporation modeling is hot and dry climate. 2009; J Hydrol Eng. 14(8): 803-811.
More A, Deo MC. Forecasting wind with neural networks. Marine Structures. 2003; 16(1), 35–49
Makarynskyy O, Makarynska D, Kuhn M, Featherstone WE. Predicting sea level variations with artificial neural networks at Hillarys Harbour, Western Australia. ESTUAR COAST SHELF S. 2004; 61(2): 351–60.
Cimon M, Kisi O. Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J HYDROL. 2009; 378 (3-4): 253–62.
Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern B. 1985; 15 (1): 116–32.
Iranian Journal of Health, Safety and Environment e-ISSN: :2345-5535 Iran university of Medical sciences, Tehran, Iran