The Effects of Maximum Aerobic Capacity and Ratings of Perceived Exertion on Muscular Strength and Endurance

Zahra Ordudari, Ehsanollah Habibi

Abstract


Grip and pinch strength are the most important factors affecting the hand’s performance. This study aimed to evaluate the relationship among maximum aerobic capacity (Vo2max) and ratings of perceived exertion (RPE) with grip and pinch strength and endurance and their impact on these factors. This cross-sectional study was performed among 83 male students and office workers by means of simple random sampling. To assess the Vo2max, RPE, grip and pinch strength and endurance the Step Test, Borg scale, dynamometer and pinch gauge were used, respectively. The findings of the study indicate that there is a direct relationship between the Vo2max with grip strength and endurance, pinch strength and endurance and BMI. On the other hand, there is an indirect relationship between RPE with grip and pinch strength and Vo2max. Moreover, there was no relationship between RPE with grip and pinch endurance. It was also found that there is a direct relationship between the BMI with grip and pinch strength, pinch endurance, and Vo2max. Finally, no relationship was observed between BMI and grip endurance. Moreover, the Vo2max was found to have no influence on the grip and pinch strength and pinch endurance, but it has an influence on the grip endurance. In jobs that require high grip and pinch strength and endurance employed those with high Vo2max so that work-related musculoskeletal disorders (WMSDs) would be prevented.

Keywords


Grip; Pinch Strength; Step Test

Full Text:

XML PDF

References


Finneran A, O'Sullivan L. Effects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracy. International Journal of Industrial Ergonomics. 2013;43(1):91-99.

Bompa TO. Theory and methodology of training: the key to athletic performance. 6th ed. Kendall Hunt Publishing Company; 1994.

Tarnus E, Catan A, Verkindt C, Bourdon E. Evaluation of maximal O2 uptake with undergraduate students at the University of La Reunion. Advances in physiology education. 2011;35(1):76-81.

Maso S, Furno M, Vangelista T, Cavedon F, Musilli L, Saia B. [Musculoskeletal diseases among a group of geriatric residence workers]. Giornale italiano di medicina del lavoro ed ergonomia. 2002;25(3):194-95.

Moosavi J, editor The effect of sport on stress of the personnel of the Azad Universities of district 3 of the country. 2nd International Congress on Physical Activity and Public Health Amsterdam The Netherlands ICPAPH; 2008.

Eston RG, Lamb KL, Parfitt G, King N. The validity of predicting maximal oxygen uptake from a perceptually-regulated graded exercise test. European journal of applied physiology. 2005;94(3):221-27.

Nasl-Saraji J, Zeraati H, Pouryaghub G, Gheibi L. Musculoskeletal Disorders study in damming construction workers by Fox equation and measurement heart rate at work. Iran Occupational Health. 2008;5(1):55-60.

Borg GA. Psychophysical bases of perceived exertion. Med sci sports exerc. 1982;14(5):377-81.

Sallinen J, Stenholm S, Rantanen T, Heliövaara M, Sainio P, Koskinen S. Hand‐Grip Strength Cut Points to Screen Older Persons at Risk for Mobility Limitation. Journal of the American Geriatrics Society. 2010;58(9):1721-26.

Shim JH, Roh SY, Kim JS, Lee DC, Ki SH, Yang JW, et al. Normative measurements of grip and pinch strengths of 21st century korean population. Archives of plastic surgery. 2013;40(1):52-56.

Jaber R, Hewson DJ, Duchêne J. Design and validation of the Grip-ball for measurement of hand grip strength. Medical engineering & physics. 2012;34(9):13:56-61

Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand Grip Strength: age and gender stratified normative data in a population-based study. BMC research notes. 2011;4(1):127-31.

Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE. Normative data on hand grip strength in a Greek adult population. International orthopaedics. 2009;33(3):713-17.

Moore KL, Dalley AF, Agur AM. Clinically oriented anatomy: Lippincott Williams & Wilkins; 2013.

Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69-74.

Ramlagan S, Peltzer K, Phaswana-Mafuya N. Hand grip strength and associated factors in non-institutionalised men and women 50 years and older in South Africa. BMC research notes. 2014;7(1):8-14.

Mcaradle WD, Katch FI, Pechar GS, Jacobson L, Ruck S. Reliability and interrelationships between maximal oxygen intake, physical work capacity and step-test scores in college women. Medicine and science in sports. 1972;4(4):182-86.

Buckley J, Sim J, Eston R, Hession R, Fox R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. British journal of sports medicine. 2004;38(2):197-05.

Grant JA, Joseph AN, Campagna PD. The Prediction of Vo2max: A Comparison of 7 Indirect Tests of Aerobic Power. The Journal of Strength & Conditioning Research. 1999;13(4):346-52.

Fess EE, Moran CA. clinical assessment recommendations.american society of hand therapists . grip strength. 1981.

Balakrishnan S, Gopalakrishnan M, Prakah E. Effect of six weeks yoga training on weight loss following step test, respiratory pressures, handgrip strength and handgrip endurance in young healthy subjects. Indian J Physiol Pharmacol. 2008;52(2):164-70

Mehta RK, Cavuoto LA. The effects of obesity, age, and relative workload levels on handgrip endurance. Applied ergonomics. 2015;46:91-95.

McQuiddy VA, Scheerer CR, Lavalley R, McGrath T, Lin L. Normative Values for Grip and Pinch Strength for 6-to 19-Year-Olds. Archives of physical medicine and rehabilitation. 2015.

Cavuoto LA, Nussbaum MA. Obesity-related differences in muscular capacity during sustained isometric exertions. Applied ergonomics. 2013;44(2):254-60.

Jalai A, Ramezani Z, Ebrahim K. Urinary Trans, Trans-Muconic Acid is Not a Reliable Biomarker for Low-level Environmental and Occupational Benzene Exposures. Safety and Health at Work. 2017;8(2):220-25.

Eksioglu M. Endurance time of grip-force as a function of grip-span, posture and anthropometric variables. International Journal of Industrial Ergonomics. 2011;41(5):401-09.

Habibi E, Kazemi M, Dehghan H, Mahaki B, Hassanzadeh A. Hand grip and pinch strength: Effects of workload, hand dominance, age, and body mass index. 2013.

Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik J. Grip strength changes over 27 yr in Japanese-American men. Journal of Applied Physiology. 1998;85(6):2047-53.

Hairi FM, Mackenbach JP, Andersen-Ranberg K, Avendano M. Does socio-economic status predict grip strength in older Europeans? Results from the SHARE study in non-institutionalised men and women aged 50+. Journal of Epidemiology and Community Health. 2009:64(9):829-37.

Mathiowetz V, Wiemer DM, Federman SM. Grip and pinch strength: norms for 6-to 19-year-olds. American Journal of Occupational Therapy. 1986;40(10):705-11

Ager CL, Olivett BL, Johnson CL. Grasp and pinch strength in children 5 to 12 years old. American Journal of Occupational Therapy. 1984;38(2):107-13.

Butterfield SA, Lehnhard RA, Loovis EM, Coladarci T, Saucier D. Grip strength performance by 5-TO 19-year olds 1. Perceptual and motor skills. 2009;109(2):36:70-72-




Iranian Journal of Health, Safety and Environment e-ISSN: :2345-5535 Iran university of Medical sciences, Tehran, Iran